Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 80(1): 205-218, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-578

RESUMO

O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver. (AU)


Assuntos
Hipercolesterolemia , Doenças Metabólicas , Vias Biossintéticas , Hexosaminas
2.
J. physiol. biochem ; 80(1): 205-218, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229951

RESUMO

O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver. (AU)


Assuntos
Hipercolesterolemia , Doenças Metabólicas , Vias Biossintéticas , Hexosaminas
3.
J Physiol Biochem ; 80(1): 205-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996652

RESUMO

O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver.


Assuntos
Proteínas Quinases Ativadas por AMP , Hipercolesterolemia , Metformina , Proteínas Quinases Ativadas por AMP/genética , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Glicosilação
4.
Nutr Res ; 93: 50-60, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365197

RESUMO

In utero insults to growing fetus impact its health in adulthood. Glycosaminoglycans (GAGs) are involved in lipoprotein metabolism in the liver and vary both quantitively and qualitatively on feeding adult rats a diet rich in cholesterol. However, no reports are available to show the modulation of GAGs when the offspring are subjected to a high cholesterol diet in gestation and lactation stages. Hypercholesterolemia in pregnant rats was induced by feeding an AIN-93 diet supplemented with 0.5% cholesterol. The pups born to mothers fed with high cholesterol diet showed a significant increase in cholesterol and triglycerides accumulation in the liver. Quantitative changes in sulfated glycosaminoglycans (sGAGs), in particular of heparan sulfate, were observed across the developmental stages. Other players involved in lipoprotein metabolism, namely low-density lipoprotein receptor-related protein 1, apolipoprotein E, and low-density lipoprotein receptor expression levels, also showed differential changes across developmental stages. Interestingly, when pups from hypercholesterolemic mothers were fed a normal diet after weaning until adulthood, a considerable amount of fat accumulation in the liver was observed, implicating fetal exposure to early high cholesterol exposure on long term health.


Assuntos
Hipercolesterolemia , Receptores de Lipoproteínas , Animais , Colesterol , Dieta , Feminino , Glicosaminoglicanos , Lactação , Fígado , Gravidez , Ratos
5.
J Biochem ; 169(1): 75-86, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32785657

RESUMO

Glycosaminoglycans (GAGs) and AMP-activated protein kinase (AMPK) are two critical molecular players involved in cellular homeostasis. Both of them are altered due to hyperglycaemia in the kidney, leading to the pathogenesis of diabetic nephropathy. Here, we have looked into the effect of AMPK modulation on sulphated GAG (sGAG) levels of tubular cells of proximal and distal origin to understand the mechanism of hyperglycaemia-mediated pathogenesis of the diabetic nephropathy. In MDCK cells (distal tubular cell) and NRK-52E (proximal tubular cell), AMPK inhibition resulted in increased sGAG levels under normal glucose conditions characteristically of heparan sulphate class, whereas AMPK activation did not have any effect. High glucose (HG) condition did not alter sGAG levels in MDCK cell despite a decrease in AMPK phosphorylation. Subjecting NRK-52E cells to HG milieu significantly decreased sGAG levels more so of chondroitin/dermatan sulphate, which is significantly prevented when HG is co-treated with AMPK activator. Interestingly, knockdown of AMPK by AMPKα1/α2 siRNA showed increased sGAG levels in NRK-52E. Our results suggest that changes in sGAG level, in particular, as a result of AMPK modulation is differentially regulated and is dependent on cell type as well as its physiological status. Furthermore, activation of AMPK is beneficial in preventing the HG-mediated decrease in sGAGs in proximal tubular cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Glicosaminoglicanos/metabolismo , Animais , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Cães , Humanos , Rim/metabolismo , Células Madin Darby de Rim Canino , Fosforilação , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...